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bstract

bjectives: To determine whether texture analysis of non-contrast enhanced computed tomography (CT) images in apparently disease-free areas
f the liver is altered by the presence of extra- and intra-hepatic malignancy in colorectal cancer patients.
aterials and methods: Hepatic attenuation and texture were assessed from non-contrast enhanced CT in three groups of colorectal cancer patients:

A) 15 controls with no malignancy; (B) nine patients with extra-hepatic malignancy but no liver involvement; (C) eight patients with hepatic
etastases. Regions of interest were manually constructed only over apparently normal areas of liver tissue excluding major blood vessels and areas

f intra-hepatic fat, which may otherwise alter CT texture irrespective of the presence of malignancy. Texture was analysed on unfiltered images
nd following band-pass image filtration to highlight image features at different spatial frequencies (fine: 2 pixels/1.68 mm in width, medium:
pixels/5.04 mm and coarse: 12 pixels/10.08 mm). The relative contributions made to the image by features at two different spatial frequencies
ere expressed as filter ratios (fine/medium, fine/coarse and medium/coarse). Texture was quantified as mean grey-level intensity, entropy and
niformity.
esults: Texture was not altered on unfiltered images whereas relative texture analysis following image filtration identified differences in fine
o medium texture ratios in apparently disease-free areas of the liver in patients with hepatic metastases as compared to patients with no tumour
entropy, p = 0.0257) and patients with extra-hepatic disease (uniformity, p = 0.0143).
onclusions: Relative texture analysis of unenhanced hepatic CT can reveal changes in apparently disease-free areas of the liver that have previously

equired more complex perfusion measurements for detection.
2007 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

In western countries, colorectal cancer is the second most
ommon malignancy [1]. Up to 40% of the patients undergo-
ng resection of the primary tumour will relapse and die of their
isease, making colorectal cancer the second leading cause of

eath related to cancer [2]. The liver is the sole site of secondary
umour spread (i.e. metastasis) in 20–40% of patients [3] and
herefore it is a common practice to follow-up patients after
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heir curative resection. There is an overall survival benefit for
ntensifying the follow-up of such patients with imaging of the
iver being associated with reduced mortality (odds ratio = 0.66,
5% confidence limits 0.46–0.95) [4]. The American Society
f Clinical Oncology (ASCO) advises annual computed tomog-
aphy (CT) of the chest and abdomen for 3 years for patients
aving a higher risk of recurrence after primary therapy [5].
herefore during re-staging of patients with colorectal cancer,
T of the liver is widely employed as a means of diagnosing
epatic metastases.

Alterations in hepatic contrast enhancement and perfusion in
orphologically normal livers have been shown to herald the

ubsequent development of overt metastases and identify col-

rectal patients with reduced survival [6–8]. Such techniques
ould be included within the conventional CT examination
ecommended by ASCO and so potentially improve the effec-
iveness of surveillance. However, wider adoption of these
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echniques has been constrained by the additional complexity
nd cost along with the increased radiation burden to the patient,
s compared to the standard contrast enhanced protocols used in
linical practice. Furthermore, in some patients use of contrast
gents required for these techniques is contraindicated either due
o allergy or other complications such as renal failure. Therefore
method that provides comparable information without the need

or administration of contrast media would be desirable.
Visual analysis of diagnostic images is largely based upon

valuating morphological information such as size and shape.
mage perception and identifying relationships between per-
eived patterns and possible diagnosis heavily depend on
adiologist’s knowledge, analytical skills, memory, intuition and
iligence. However, the human visual system has difficulties in
iscriminating textural information such as coarseness and regu-
arity that result from local spatial variations in image brightness
9]. Furthermore, quantitative information from images is
ecoming increasingly important. This however is not possible
hrough visual analysis and therefore requires computer-based
lgorithmic processing. In medical image processing, texture
nalysis (TA) is a vital component of computer-assisted diagno-
is (CAD) because it is difficult to classify human tissues based
n shape or grey-level information given in Hounsfield units
HU) only. Also, improvements in texture analysis techniques
ould increase the extracted information enabling better quan-

ification of differences in appearance inaccessible to the naked
ye.

Most CAD–TA algorithms follow a two stage scheme with
nitial quantification using numerous mathematical descriptors
f texture computed from different available texture anal-
sis methods and subsequent decision algorithms based on
omputer vision and artificial intelligence. The three general
ethods of texture quantification follow model based, frequency

ased, structure based or statistically based approach [10,11].
n model based approach, mathematical models such as frac-
al and stochastic models, analyze texture by identifying an
ppropriate model that reflects prior information about the type
f tissue images to be analyzed [12–15]. These are computa-
ionally complex, lack feature selectivity and are not suitable
or describing local image structures. Furthermore frequency
omain power spectrum analysis or structural methods are less
mployed because medical image data is not periodic with
ndividual pixel values reflecting image intensity and the varia-
ions in medical images account for functional or pathological
haracteristics which lack any definite shape, whereas a sta-
istical approach measuring spectral properties of an image has
een commonly employed in texture quantification [16–18]. But
he effectiveness of these texture analysis methods and texture
arameters in discriminating various pathological states of the
issue depends on the application under study and their ability
o be readily applicable to diagnostic images in routine clinical
ractice. Several methods of texture analysis such as Wavelet
echniques and decision-based algorithms have previously been

pplied to the liver on CT, mostly for identification and character-
zation of focal liver lesions [19–25]. Few studies have focused
n texture changes in apparently disease-free areas of the liver
26–28]. Some studies have combined multiple texture parame-
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ers, for example using classifiers and artificial neural networks
ANNs) [19–21,24,25]. However, acceptance of such methods
n the clinical arena is constrained by the lack of any clear biolog-
cal correlate for the successful combination of texture features.
n the other hand, a previous computer simulation of hepatic
T has shown that simple statistical texture parameters corre-

ate with liver vascularity [29]. This finding was subsequently
onfirmed in humans by a report showing correlations between
T hepatic texture and blood flow [30]. Thus these methods
enefit from a direct correspondence to the blood flow changes
reviously observed in disease-free areas of the liver on CT in
atients with hepatic metastases [31–33] and therefore have been
dopted for this study. Because there are no recognized biolog-
cal correlates for any alternative approaches to texture analysis
n liver CT, we have not included a comparator texture analysis

ethodology for this study.
Of the previous studies demonstrating alterations in CT tex-

ure in apparently disease-free areas of the liver, one did not state
hether contrast material had been given whilst others reported

ignificant differences on contrast enhanced images, thus pre-
enting its application when contrast enhancement may not
e indicated, for example during integrated positron emission
omography (PET)–CT, or when enhancement has been con-
raindicated. Furthermore, neither study assessed the potential
mpact of extra-hepatic disease on liver texture.

We have recently developed and implemented a method for
exture analysis of medical images that employs selective-scale
ltration similar to the Wavelet approach to separately extract
ne to coarse features in the image and uses statistical texture
arameters to quantify textures at different texture scales. This
elective-scale incremental tuning ability of the filter (which
s not a feature of orthogonal Wavelet basis), benefits from
ndependent assessment of fine, medium and coarse textures
orresponding to particular scales of detail whilst minimiz-
ng the effects of noise. This study assesses the potential for
his approach to texture analysis of non-contrast enhanced CT
mages to reveal differences between normal liver and apparently
isease-free areas of the liver in patients with either hepatic or
xtra-hepatic metastases from colorectal cancer.

. Materials and methods

The study comprised texture analysis of archival image data
hat had been acquired as part of a research program in which
atients underwent a diagnostic CT examination of the chest,
bdomen and pelvis that included images of the liver before
nd during intravenous contrast enhancement, along with a
luoro-deoxy-glucose (FDG)–PET examination of the whole
ody. This research program had been approved by the Hospital
thics Committee with informed written consent obtained from
ll patients. The study consisted of 40 patients under imaging
urveillance following previous resection of colorectal cancer.
ased on the visual interpretation of the diagnostic CT and

DG–PET, these patients were divided in the following groups:
roup A: patients with no current evidence of tumour (n = 15);
roup B: patients with metastases at sites remote from the liver
ut without liver metastases (n = 9) and group C: patients with



rnal

l
E
f
a

2

y
a
o
c
o
s
c
f
s
t

2

l
a
c
d
(
p

U
a
T
d
d
i
g
t
i
f
f
l
i
a
o
l
t
t
c

f
c
l
a

B. Ganeshan et al. / European Jou

iver metastases with or without extra-hepatic metastases (n = 8).
ight patients were excluded either due to the presence of a

ocal lesion in the CT slice under consideration or due to motion
rtefacts.

.1. CT image acquisition

The non-contrast enhanced images were used for texture anal-
sis and comprised a 10 mm section of mid liver obtained with
1 s scan duration, at a tube current of 300 mA and tube voltage
f 120 kVp (CT Twin: Elscint, Haifa, Israel). Only a single non-
ontrast enhanced image through the mid-liver was obtained in
rder to minimise the additional radiation burden beyond the
tandard clinical protocol which, at this institution, comprised
ontrast enhanced images only. The in-plane pixel resolution
or the liver images used in this study was 0.84 mm. Recon-
tructed images were transferred to a personal computer for
exture analysis.

.2. Texture analysis

Texture was assessed in apparently disease-free areas of the
iver tissue from non-contrast enhanced CT images. Texture
nalysis within hepatic region of interest (ROI) comprised pro-

essing the CT image to produce a series of derived images
isplaying fine, medium and coarse texture features respectively
Fig. 1). This methodology was implemented with a dedicated
rogram written using MATLAB (Math works Inc, Natick,

t
n
Q
fi

Fig. 1. Unfiltered and filtered images at different sigm
of Radiology 70 (2009) 101–110 103

SA), a high-level technical computing language and inter-
ctive development environment to perform image processing.
his texture analysis methodology employed in this study is
escribed in detail below. However, in brief the texture in each
erived image was quantified by calculating the mean grey-level
ntensity (i.e. brightness), entropy (i.e. intensity and inhomo-
eneity) and uniformity (i.e. distribution of grey-level) within
he ROI. Entropy and uniformity represent additional statistical
mage parameters that can quantify homogeneity and brightness;
eatures that are perceived visually as image texture which give
urther insight into the distribution of tissue attenuation that is
ost when averaging intensity over a large area. Whilst little used
n clinical radiology to date, the term “entropy” has been widely
pplied in information theory as a useful measure of the scatter
f the elements in an image [34]. Texture ratios were also calcu-
ated from individual derived images, i.e. fine to medium, fine
o coarse and medium to coarse. These values can be considered
o represent the relative contribution made by fine, medium and
oarse texture components, respectively.

Texture analysis comprised two stages: (a) image filtration,
ollowed by (b) quantification of texture. A thresholding pro-
edure was carried out to exclude fat, air and bone and include
iver blood vessels by removing from analysis any pixels with
ttenuation values below 0 HU or above 300 HU in the unfil-

ered image. Even after applying this threshold statistically large
umber of liver pixels was available for reliable texture analysis.
uantification of texture was performed with and without image
ltration

a values in the non-contrast enhanced image.
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.2.1. Image filtration
There are different transform methods available for texture

nalysis such as Fourier [35] and Wavelet transforms [36–39]
o obtain derived textured images. Frequency domain methods
erform poorly in practice, due to lack of spatial localisation.
avelet transforms provide better spatial localisation and have

dvantages of varying the spatial resolution to represent tex-
ures at the most suitable scale and wide range of choices for
he Wavelet function. However, Wavelets are generally orthog-
nal filters restricted in the freedom of selectively tuning the
lter. This drawback can be avoided by choosing a Laplacian of
aussian [40] spatial filter as a non-orthogonal Wavelet filter.

.2.2. Laplacian of Gaussian (LoG) band-pass filter [40]
We have used Laplacian of Gaussian band-pass filter for our

exture analysis. This is a combination of Laplacian, which is a
ifferential operator used for detecting intensity changes within
n image first smoothened by the Gaussian distribution, based on
he filter sigma value. The degree or strength of smoothening is

roportional to the filter sigma value. For example, small sigma
alue produces a lower degree of smoothening enabling extrac-
ion of fine texture, while higher sigma value produces greater
egree of smoothening enabling extraction of coarse texture.
his filter is explained in detail below.

o
i
d
c

Fig. 2. The 2D forms of the LoG filter in the spatial a
of Radiology 70 (2009) 101–110

The two-dimensional (2D) Gaussian distribution (G) is given
y

(x, y) = e−(x2+y2)/2πσ2
(1)

here (x, y) are the spatial coordinates of the image array and
igma (σ) is the standard deviation. The 2D Gaussian distri-
ution effectively blurs the image, wiping out all structures at
cales much smaller than the sigma of the Gaussian. Thus the
aussian distribution would enable highlighting only hepatic

extural features of a particular scale in CT images correspond-
ng to the σ value. To assess independently whether different
cales of liver texture from apparently disease-free areas of non-
ontrast enhanced CT images could differentiate between the
iagnostic groups of patients, we have employed this LoG fil-
ration technique to filter out textural features at different scales.
aussian smoothening, which has the desirable characteristics
f being smooth and localized in both the spatial and frequency
omains was employed before the Laplacian operator.

Laplacian (�2) was chosen as it is the lowest-order

rientation-independent (isotropic) differential operator which
nherently has less computational burdens and can be used to
etect intensity changes in an image that correspond to the zero-
rossings of the filter [40]. �2G is the Laplacian of Gaussian

nd frequency domain at sigma (σ) value of 2.5.
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Table 1
Filter sigma value and the corresponding width of the filter (in pixels and mm)

Sigma (�) Texture type Filter width (pixels) Filter width (mm)

0.5 Fine 2 1.68
1
2
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.5 Medium 6 5.04

.5 Coarse 12 10.08

LoG) filter, a circularly symmetric Mexican-hat-shaped filter
see Fig. 2 for spatial and frequency domain representations of
he filter) whose distribution in 2D spatial domain is given by

2G(x, y) = −1

πσ4

(
1 − x2 + y2

2σ2

)
e−(x2+y2)/2σ2

(2)

rom the mathematical expression of this circularly symmetric
lter at three different sigma (σ) values, the number of pix-
ls representing the width between the diametrically opposite
ero-crossing points in this filter can be calculated in the spatial
omain (see Fig. 2). The width of the filter at different σ values
re obtained by evaluating the LoG spatial distribution along
he x and y directions. The lower the sigma value, the smaller
s the width of the filter in the spatial domain and the larger is
he pass-band region of the filter in the frequency domain, high-
ighting fine details or features of the filtered image in the spatial
omain. Similarly, the higher the sigma value, the higher is the
idth of the filter in the spatial domain; this corresponds to a

maller pass-band region of the filter in the frequency domain,
ighlighting coarse features of the filtered image in the spatial
omain. Thus the filter can be modulated so as to highlight fine
σ = 0.5), medium (σ = 1.5) and coarse (σ = 2.5) liver textures
r features. Table 1 indicates the filter width in pixels for the
igma values 0.5, 1.5 and 2.5. From Fig. 2 it is shown that the
idth of the filter at a particular sigma value is the distance
etween the diametrically opposite zero-crossings, which are
btained by evaluating the LoG spatial distribution along the
and y directions. This width can be considered as the scale

t which the structures in the image will be highlighted and
nhanced whilst structures below this scale will become blurred
see Fig. 1).

Filtration can be done in the spatial or frequency domain. In
he spatial domain, the filter mask is convolved with the image,
hich involves intensive computation. It is more efficient to

mploy the filter in the frequency domain, as convolution of the
lter mask and the image in the spatial domain is equivalent to
ultiplication of the Fourier transforms of the filter mask and the

mage in the frequency domain. The inverse Fourier transform
f the filtered spectrum gives the resultant filtered image in the
patial domain. Also the accuracy of this filtration operation is
mproved when implemented in the frequency domain, as the
uantization errors arising from the convolution in the spatial
omain for the small σ values being considered will result in
naccuracies of the filtered image.
.2.3. Quantification of texture
For each patient from the three diagnostic groups, a hep-

tic ROI excluding the inferior vena cava, porta hepatis, visible
etastases and areas of fat (e.g. adjacent to the falciform liga-
of Radiology 70 (2009) 101–110 105

ent) was manually drawn on the non-contrast enhanced image
f each patient within the margins of the liver and stored in the
omputer as a binary mask and assigned to the corresponding
atient. The presence of fat and major blood vessels may alter
pparently disease-free areas of the liver texture on CT. This
nsured that the same unmodified ROI corresponding to each
atient was used for all the different two-dimensional (2D) tex-
ure analyses which were carried out on the same non-contrast
nhanced image from which the binary mask was generated. The
esulting images, containing only liver pixels, underwent band-
ass filtering with the LoG filter using sigma values of 0.5 (fine
exture), 1.5 (medium texture) and 2.5 (coarse texture). The fol-
owing statistical parameters were used to evaluate texture within
he hepatic region of interest, both for unfiltered images as well
s filtered images highlighting fine, medium and coarse texture,
espectively: (a) mean grey-level intensity (m), (b) Entropy (e),
parameter indicating intensity and inhomogeneity (irregular-

ty), and (c) Uniformity (u) indicating how close the image is to
uniform distribution of the grey-levels. These parameters are
efined below where R the region of interest within the image
(x, y), N the total number of pixels in the region of interest
, l the number of grey-levels (for example l = 1 to k indicates
rey-level from 1 to k) in the region of interest R and p(l) the
robability of the occurrence of the grey-level l based on the
mage histogram technique:

ean grey-level intensity (m) = 1

N

∑
(x,y) ∈ R

[a(x, y)] (3)

ntropy (e) = −
k∑

l=1

[p(l)] log2[p(l)] (4)

niformity (u) =
k∑

l=1

[p(l)]2 (5)

n addition to the quantification of fine, medium and coarse
exture highlighted at different band-pass regions of the filter;
he ratios of texture parameters highlighted by different band-
ass regions of the filter, i.e. fine to medium, fine to coarse
nd medium to coarse were quantified which are defined as
ollows:

Fine to medium texture ratio for mean grey-level intensity

= 1/N
∑

(x,y) ∈ R[a(x, y)σ=0.5]

1/N
∑

(x,y) ∈ R[a(x, y)σ=1.5]
(6)

Fine to medium texture ratio for entropy

= −∑k
l=1[p(l)σ=0.5] log2[p(l)σ=0.5]

−∑k
l=1[p(l)σ=1.5] log2[p(l)σ=1.5]

(7)
Fine to medium texture ratio for uniformity

=
∑k

l=1[p(l)σ=0.5]2

∑k
l=1[p(l)σ=1.5]2

(8)
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Fine to coarse texture ratio for mean grey-level intensity

= 1/N
∑

(x,y) ∈ R[a(x, y)σ=0.5]

1/N
∑

(x,y) ∈ R[a(x, y)σ=2.5]
(9)

Fine to coarse texture ratio for entropy

= −∑k
l=1[p(l)σ=0.5] log2[p(l)σ=0.5]

−∑k
l=1[p(l)σ=2.5] log2[p(l)σ=2.5]

(10)

Fine to coarse texture ratio for uniformity

=
∑k

l=1[p(l)σ=0.5]2

∑k
l=1[p(l)σ=2.5]2

(11)

Medium to coarse texture ratio for mean grey-level

intensity = 1/N
∑

(x,y) ∈ R[a(x, y)σ=1.5]

1/N
∑

(x,y) ∈ R[a(x, y)σ=2.5]
(12)

Medium to coarse texture ratio for entropy

= −∑k
l=1[p(l)σ=1.5] log2[p(l)σ=1.5]

−∑k
l=1[p(l)σ=2.5] log2[p(l)σ=2.5]

(13)

Medium to coarse texture ratio for uniformity

=
∑k

l=1[p(l)σ=1.5]2

∑k
l=1[p(l)σ=2.5]2

(14)

hese texture ratio quantifications were used because the ratios
ould be effectively normalized, thereby minimizing the effects
f any potential variations in CT attenuation values occurring
rom one patient to another and also reducing the effect of noise
n texture quantification. Also texture parameters from unfil-
ered images provided a control state against which the benefits
ained from image filtration were assessed.

.3. Statistical analysis

For all three diagnostic groups of patients, medi-
ns ± interquartile range were calculated for each texture
arameter for the unfiltered, filtered—fine, medium and coarse

exture images along with ratios of texture parameters from fine
nd medium, fine and coarse and medium and coarse images.
he non-parametric two-tailed Mann Whitney test was used

or evaluating the significance of the difference between the

p
f
g
u

able 2
atient characteristics

Group A: normal patients Group B: patients

umber 15 9
ex, male 7 7
edian age (range) 60 (46–70) 63 (54–73)
edian weight (range) 79 (56–109) 77 (59–95)

o significant difference was observed between the three diagnostic groups for gend
of Radiology 70 (2009) 101–110

roups on the basis of their texture without filtration, filtered
exture and texture ratios besides gender, age and body weight.
he difference between groups was considered to be signifi-
ant if the p-value was less than 0.05. For texture parameters
emonstrating significant differences between the diagnostic
roups, the receiver-operating characteristics (ROC) analysis
dentified diagnostic thresholds to identify patients with hepatic

etastases. These predictors were also evaluated using a 2 × 2
ontingency table from which sensitivity and specificity val-
es were calculated and their significance tested using Fisher’s
xact two-tailed test. Also, for these diagnostic thresholds the
dds ratio and 95% confidence interval were calculated.

. Results

Out of the eight patients excluded from the initial dataset of
0, six were from group C each having a focal liver lesion within
he CT slice selected for texture analysis, and of the remaining
wo with severe motion artefacts on the CT image, one was from
roup A and other from B. There was no difference in gender,
ge or body weight between the three groups based on Mann

hitney test (Table 2).
The texture parameters for unfiltered and filtered non-contrast

nhanced CT images for all the three diagnostic groups are sum-
arized in Table 3. There were no significant differences for the

exture parameters between any groups for texture analysis of
nfiltered images and there was no difference between groups A
no tumour) and B (extra-hepatic tumour only) for any texture
arameter.

For coarse and medium texture images, there was a trend
owards higher values for mean grey-level intensity and entropy
n group C (liver metastases) as compared to groups A and B,
eaching statistical significance for coarse texture (p < 0.05). On
he other hand, in fine texture images, these parameters tended
o be lower in group C. Uniformity values also tended to be
ower in group C for coarse and medium texture images but not
eaching statistical significance.

Greater separation of the patient groups was achieved by
sing ratios of texture values. In particular, fine to medium tex-
ure ratios were most significant in differentiating the different
iagnostic groups (see Table 3 and Figs. 3–5). For comparison
etween groups A and C, the most significant difference was
btained for the ratio of fine to medium texture using the texture

arameter entropy (p = 0.0257) whilst the difference in this ratio
or mean grey-level intensity was less significant (p = 0.049). For
roups B and C, the most significant difference was obtained
sing the fine to medium texture ratio for the texture parameter

with extra-hepatic metastases Group C: patients with liver metastases

8
4

64 (46–81)
77 (47–99)

er, age and body weight based on Mann Whitney test.
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Table 3
Texture parameters mean grey-level intensity, entropy and uniformity measured for texture analysis with and without image filtration

Texture Parameter Group A Group B Group C
Median Median Median

Without filtration
Mean grey-level intensity 25.4363 27.1292 33.0651
Entropy 4.8046 4.8838 4.68295
Uniformity 0.042788 0.041746 0.045969

Fine (� = 0.5)
Mean grey-level intensity 6.0004 5.5249 5.46295
Entropy 3.2648 3.2131 3.1756
Uniformity 0.31033 0.31343 0.30914

Medium (� = 1.5)
Mean grey-level intensity 2.8296 2.6531 3.1023
Entropy 2.5853 2.521 2.64225
Uniformity 0.40014 0.40043 0.37238

Coarse (� = 2.5)
Mean grey-level intensity 1.9789 1.8777 2.7034 a*
Entropy 2.0138 2.032 2.2377 a*
Uniformity 0.51072 0.48171 0.472375

Fine/medium
Mean grey-level intensity 2.197785 2.049123 1.698856 a*
Entropy 1.298338 1.280643 1.183054 a**, b**
Uniformity 0.769779 0.781044 0.811117 b***

Fine/coarse
Mean grey-level intensity 3.148519 2.969172 1.89672 a*, b*
Entropy 1.611122 1.563338 1.383165 a*, b*
Uniformity 0.613353 0.607295 0.657135

Medium/coarse
Mean grey-level intensity 1.532863 1.448996 1.20652 a*, b**
Entropy 1.244492 1.211374 1.173022
Uniformity 0.788798 0.815011 0.800232

a and b: statistically significant difference in value from group A and group B patients, respectively (*, 0.03 < p < 0.05; **, 0.02 < p < = 0.03; ***, p = 0.01).

Fig. 3. Mean grey-level intensity for fine to medium texture ratio (σ = 0.5 and
1.5) in the non-contrast enhanced images for the three groups of patients. The
patients with liver metastases (group C) showed a significantly decreased trend
in ratio values compared with the normal patients (group A; p = 0.0488). Box
and whisker chart showing median, inter-quartile range and range.

Fig. 4. Entropy for fine to medium texture ratio (σ = 0.5 and 1.5) in the non-
contrast enhanced images for the three groups of patients. The patients with liver
metastases (group C) showed a significantly decreased trend in ratio values com-
pared with the normal patients (group A; p = 0.0257) and with the patients with
extra-hepatic metastases (group B; p = 0.03). Box and whisker chart showing
median, inter-quartile range and range.

Fig. 5. Uniformity for fine to medium texture ratio (σ = 0.5 and 1.5) in the non-
contrast enhanced images for the three groups of patients. The patients with
l
c
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s

iver metastases (group C) showed a significantly increased trend in ratio values
ompared with the patients with extra-hepatic metastases (group B; p = 0.0143).
ox and whisker chart showing median, inter-quartile range and range.

niformity (p = 0.0143). Entropy also discriminated these two
roups, with the highest significance obtained using the fine to
edium texture ratio (p = 0.03).
For fine to medium texture ratios, an entropy value of less than

.21 identified patients with liver metastases (group C) from the
est of the patients (area under ROC curve = 0.802, p < 0.0005,
ensitivity = 75%, specificity = 83%, odds ratio = 15, 95% con-
dence interval = 2.18–103 with p < 0.005). The diagnostic
erformance of the three texture parameters is summarized in
able 4.
. Discussion

The analysis methodology used in this study has demon-
trated statistically significant differences in the texture of
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Table 4
Diagnostic performances of texture parameters obtained from fine to medium texture ratios in identifying patients with liver metastases

Texture parameter AUC (p) Diagnostic
threshold

Sensitivity Specificity Odds ratio 95% confidence
interval

Fisher’s
test (p)

Mean Grey-level Intensity 0.760 (<0.005) <1.71 75% (6/8) 83.33% (20/24) 15 2.18–103 <0.005
E (6/8)
U (6/8)
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ntropy 0.802 (<0.0005) <1.21 75%
niformity 0.781 (<0.01) >0.80 75%

UC: Area under the receiver-operating characteristics (ROC) curve.

pparently disease-free areas of the liver tissue in patients with
etastases as compared to patients with no evidence of tumour

nd patients with extra-hepatic tumour only in the absence of
ontrast enhancement. These texture findings are directly anal-
gous to the perfusion CT findings of Tsushima et al. [33].
owever, by avoiding the multi-phase acquisitions using con-

rast media that are needed to assess hepatic haemodynamics on
T, texture analysis from a single non-contrast enhanced image

s associated with a lower radiation burden and cost. The fact that
hanges in texture are detectible in CT images acquired with-
ut contrast enhancement means that information comparable to
hat derived from perfusion imaging can be obtained in patients
or whom administration of contrast agents is contra-indicated.
ne reason for the alteration in non-contrast enhanced CT tex-

ure of apparently disease-free areas of the liver tissue could be
ue to the presence of abnormalities in the hepatic parenchyma
ot easily perceived by the eye. The possibility that liver texture
s altered by humoral factors secreted by tumours is unlikely
ecause such factors would be expected to alter texture in appar-
ntly disease-free areas of the liver for all patients with evidence
f tumour, irrespective of its location within or outside the liver.
e found no change in texture in association with extra-hepatic

umour, a finding that is in accordance with Tsushima et al. [33]
ho found no blood flow changes in a similar patient group.
The alterations in texture parameters seen in apparently

isease-free areas of the liver in patients with liver metastases
re found not only on fine texture images (approximately 2 mm)
ut also on the medium and coarse texture images which high-
ight image features of approximately 5–10 mm. However, the
hanges in fine texture parameters tend to be in an opposite
irection to the alterations in medium and coarse texture. For
xample, mean grey-level intensity is reduced on fine texture
mages in apparently normal liver in patients with metastases
Group C) but increased in medium and coarse texture images.
n unfiltered images, these opposite effects would tend to can-

el out but would be compounded when fine to medium and fine
o coarse texture ratios are calculated.

The texture analysis methodology used in our study is simple,
asy to implement and effective but differs from the previous
tudies demonstrating alterations in texture in apparently nor-
al liver in patients with metastases [26,27]. Firstly, we have

sed image filtration to separately evaluate fine, medium and
oarse texture. This filtration proved to be critical in our study as
o significant differences were found between any of the diag-

ostic groups for texture analysis of unfiltered images. Also,
he previous study of Mir et al. [26] found that second order
irection-oriented statistical parameters (i.e. statistical methods
ased on the joint probability distributions of pairs of pixels such

o
i
i

83.33% (20/24) 15 2.18–103 <0.005
87.50% (21/24) 21 2.82–156 <0.0025

s grey-level run length or co-occurrence matrices) were neces-
ary to extract relevant textural features from liver regions. By
sing image filtration in our texture analysis, we were able to
se first order statistical parameters based on the probability dis-
ributions of individual pixels such as mean grey-level intensity,
ntropy and uniformity. These parameters have the advantage of
eing directionally independent and less computationally expen-
ive. There is no a priori reason to indicate that changes in liver
arenchyma in association with hepatic metastases should be
ssociated with any particular direction and indeed are more
ikely to be non-directional. Therefore, our employment of a
irectionally independent filter and first order statistical parame-
ers can be considered appropriate. Furthermore, the use of ratios
f texture parameters, derived from images filtered to highlight
ifferent degrees of spatial detail (i.e. fine to medium, fine to
oarse and medium to coarse ratios) to analyze texture in non-
ontrast hepatic CT, were more effective in differentiating the
iagnostic groups than parameters derived from individual fil-
ered images. Among the different texture ratios, fine to medium
exture ratios tended to highlight textural differences between the
wo liver areas better than fine to coarse and medium to coarse
exture ratios.

Our study was constrained by a small sample size. How-
ver the series was a part of a research protocol where all the
atients underwent CT and PET imaging irrespective of their
T findings, on the basis of which patients were divided into

hree diagnostic groups. It is unlikely that the results obtained
ere due to a chance alone as statistically significant differences
etween the diagnostic groups were observed for several texture
arameters with fine to medium texture ratios providing the best
iscrimination. Nevertheless our findings need to be confirmed
n a larger series of similar patients. A further limitation of our
tudy has been the inability to confirm the actual causes in alter-
tion in texture in the apparently disease-free areas of the liver
n patients with overt lesions. Biopsy of these regions was pre-
ented by ethical considerations. However, it may be possible
o address this issue in future by studying CT texture in appar-
ntly normal liver regions in patients undergoing resection of
epatic metastases in whom pathological examination of equiv-
lent liver regions could be undertaken. We were also unable
o determine whether changes in hepatic texture heralded the
ubsequent development of over lesions as this follow-up infor-
ation was not available with the archival images used in this

tudy.

In the United States, it is estimated that 148,610 new cases

f colorectal cancer are identified each year [1]. The major-
ty of these patients will undergo hepatic CT at some stage
n their clinical care. Because of a greater sensitivity for hep-
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tic metastases, such CT examinations are ideally performed
ollowing intravenous administration of contrast media. How-
ver, the use of contrast media is contraindicated in patients
ith allergy, renal failure or other disorders. Contraindications

o iodinated contrast media for patients undergoing CT occur
ith sufficient frequency for gadolinium to be proposed as an

lternative agent for CT angiography [41,42]. For example,
emy-Jardin et al. [41] identified 39 such patients referred for
T pulmonary angiography within one year. However, gadolin-

um is not currently considered a suitable alternative to iodinated
ontrast media for opacification of parenchymal organs such
s the liver [42]. Thus, texture analysis of CT images without
ontrast media could be usefully applied to patients with con-
raindications to iodinated contrast media referred for hepatic
T.

The use of non-contrast enhanced images for texture anal-
sis avoids any potential variability in the results arising from
ndividual patient physiological characteristics that are known
o affect contrast enhancement. The significant differences in
exture parameters for patients without liver metastases from
pparently normal liver in patients with liver metastases found in
ur study suggest that texture analysis of conventional CT exam-
nations without contrast-agents could be potentially employed
s a computer-assisted diagnosis (CAD) technique for prelim-
nary examination of colorectal cancer patients. CT images
cquired without contrast material are less likely to detect liver
etastases than those obtained with contrast enhancement. A
nding of altered texture on non-contrast enhanced CT images

n patients unable to receive contrast agents due to allergy,
enal failure or other contra-indication, or performed as part of
ET–CT, would indicate an increased risk of undetected hepatic
etastases. For example, based on our data, an entropy value

elow 1.21 would indicate a 15-fold increase in risk of unde-
ected hepatic metastases, identifying metastases elsewhere in
he liver with a sensitivity of 75% and specificity 83%. This
ncreased risk may warrant further investigation with another
maging modality such as magnetic resonance imaging (MRI),
hich has greater sensitivity for small hepatic metastases, and

or which the likelihood of adverse reaction is less. Should sub-
equent MRI demonstrate focal liver lesions, these patients could
otentially be candidates for liver biopsy or radiofrequency abla-
ion.

. Conclusions

In summary, this study has shown the ability of texture anal-
sis of non-contrast enhanced CT images of the liver to reveal
hanges in apparently disease-free areas of the liver in colorectal
ancer patients with liver metastases as compared to those with
o evidence of tumour or extra-hepatic tumour only. Although
he findings are comparable to those previously described using
T perfusion imaging, texture analysis can be readily applied to

mages acquired in routine practice, thereby reducing cost, com-

lexity and radiation burden. Abnormal texture in the absence
f visible metastases on non-contrast enhanced CT could poten-
ially be used as an indication for further investigation with
epatic MRI.
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